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Synopsis
Energy losses of natural alpha particles from Bi212 and Po212 have been determined in argon 

gas with an accuracy of about 0.2 °/0. The Lewis correction and the multiple scattering correction 
are briefly discussed. The data are compared with the Bethe theory, formulated with two dif
ferent shell correction functions, /-values of 182 eV and 167 eV are obtained, respectively. 
Northcliffe’s measurements at higher energies favor / = 182 eV. Comparison with hydrogen ion 
stopping power data confirms the recently discovered dependence on the particle charge.
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1. Introduction

While the Belhe theory of stopping power1*2’3 is generally accepted, there 
are many details at low particle velocities which are not well established. 
In particular it is not clear how valid the Born approximation is. Accurate 
experiments are a necessity for the clarification of these questions. Further
more, accurate measurements are needed for applications in nuclear physics, 
health physics, radiobiologi, industrial radiation uses and related fields.

Energy loss and range measurements for natural alpha particles in many 
materials have been performed for over half a century 4,5,6,7,8 Tpe devel
opment of solid state ionization detectors has permitted a more accurate 
measurement of particle energies and allows fairly simple experiments9’10’ 
11,12.

Data for precision measurements in gases are scarce13’14. Consideration 
of the details in the detector operation permit an accuracy of close to 0.1 °/0 
in the energy loss measurements (section 2).

With the parameters obtained in this work we present a range energy 
table for a-particles. Recently15’16 it has been confirmed, that stopping 
powers and ranges of particles with different charges z are not exactly 
proportional to z2, as the Bethe-formula predicts. A comparison with avail
able proton and triton measurements will be shown.

2. Energy Loss Measurements

Bethe’s theory furnishes the mean energy loss of initially monoenergetic 
particles in absorbers of a given thickness, and therefore will be applicable 
to the present experiment. While it is possible to determine energy losses 
directly, if the absorber can be used as a detector (ref. 17; an interesting 
variation is described by Andersen, e/ al.18), in most substances it will be 
necessary to measure an incident energy T and a residual energy 7\ with 
mean values < T > and < 7\ > respectively. The mean energy loss will be 
determined by

ZJ=<7’ >-< Ti>.
1*
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In the measurements presented here, absorber thicknesses will be expressed 
in mass per unit area. For gases, the distance d between the particle source 
and the surface of a silicon detector will have to be measured as well as 
the pressure of the gas.

2A. Measurements of Energies

The radioactive decay of Th C and Th C' nuclei is used as a source of 
alpha particles of well-known energies for the experiment. For the prepara
tion of a source, a stainless steel pin with a diameter of 2 mm and a Hat and 
polished end surface was connected to the negative pole of a 300 volt bat
tery, and was exposed in the thorium emanation (Rn220) of a 10 me Th228 
source for 60 minutes.

a) Determination of Energy < T > of Incident Alpha Particle.
Since the thoron atoms attached to the source undergo two shortlived 

alpha decays (to Po216 and Ph212, which has a half life for beta decay of 
11 hours), it is to be expected that recoil nuclei will penetrate a small dis
tance into the source. The alpha particles from Bi212 (Th C) and Po212(ThC') 
used in the experiment therefore will often come from inside the stainless 
steel source pin. No direct evidence is available for Th sources, but Rytz19 
found for Bi211 sources a mean energy which was about 3 keV lower than 
the energy of the “line head” (estimated by us from Fig. 7 of ref. 19). It 
will therefore be assumed that the energies given by Rytz have to be reduced 
by 3 keV and 4 keV for Po212 and Bi212, respectively. The values adopted 
for this paper are listed in Table I.

Measurements of the shape and the pulseheight of the Po212 line in the 
silicon detector showed no change as a function of the time used to prepare 
the source. The exposure of the source to argon gas for 12 hours also did 
not change the mean pulseheight.

Table I

Nucleus
T(keV) Self 7’(keV) Relative
Rytz Absorption Adopted Abundance

Po212................... 3 ±2 keV 8782 ±2 100 %
Bi212j................... .... 6089.8 ±0.7 4 ± 3 keV 6086 ± 3 27.1%

.... 6050.6 ±0.7 4 ± 3 keV 6047 ±3 69.7%
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The separation of 39 keV for the two energies found for Bi212 can only 
be observed for zero energy loss. For finite energy losses, straggling amounts 
to considerably more than 39 keV, and it is necessary to use a weighted 
mean energy for the two energies. Using the branching ratio given by 
Perlman and Asaro20 (see Table I), a mean energy T = 6058 keV, cor
rected for source thickness, is obtained.

b) Determination of Residual Energies 1\.
The reduced energies Ti are determined in a detection system consisting 

of a surface barrier silicon detector, test pulser, preamplifier, amplifier and 
a 100 channel analyzer. Since it was found that amplification changes of 
the system amounted to more than 1 °/0 per day, all measurements were 
based on a comparison of alpha pulseheights to test pulseheights. The 
quantity observed in the silicon detector is a charge pulse caused by the 
collection of the electrons and holes produced by the particle. The detailed 
detector performance will be discussed in connection with the energy cali
bration of the detector system.

Testpulses with a rise time comparable to the rise time of alpha-pulses 
(less than 0.1 g sec) are fed into the preamplifier in parallel with the alphas 
through a t pF capacitor. It has been assumed that testpulses and alpha
pulses of the same magnitude will experience exactly the same amplification 
in the system. No complete check of this assumption has been performed, 
but some tests on the same system are described by Tschalär21. Problems 
within the accuracy desired here (~ 0.1 °/0) occur for pulse rise times ex
ceeding 0.1 g sec.

It is not practical to superimpose a testpulse group on the alpha group. 
Therefore, in each measurement, the group of alphapulses is bracketed by 
two groups of testpulses. Since the analyzing system is somewhat nonlinear, 
a third group of testpulses is also recorded. The testpulses are recorded 
during the period of the alpha measurement (Fig. 1). The magnitude of the 
testpulses is proportional to the dial setting of a helipot. Its linearity has been 
measured with a Wheatstone bridge and is better than 0.05°/0. The voltage 
for the testpidses is supplied from a Zener reference diode, its random 
drifts were slow during a day and amounted to less than 0.05 °/0.

The following evaluation procedure is used for the determination of the 
mean alpha-pulseheight for each spectrum.

i) Calculate the mean channel number for the alphas and the three 
tcstpulse groups.
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Fig. 1. Typical spectrum of alpha particles reduced in energy from <T> = 8.782 MeV to 
<T1>~7.0MeV. Thus, the average energy loss is about 1.8 MeV. With the indicated cut-off 
points for the spectrum, the location of the mean channel is calculated to be 72.01. The “peak 
location” obtained by visually drawing tangent lines to the sides of the spectrum is located at 
72.3 channels. The full width at half maximum obtained from the figure is 109 keV, while the 
calculated standard deviation for the spectrum is p = 48.4 keV. The ratio of these two numbers 
is 2.26. For a gaussian, this ratio is 2.36. Two testpulses with dial readings of 68 and 72 are 
also shown.

ii) Calculate a quadratic calibration curve for the conversion of channel 
number into dial setting of testpulses.

iii) Express mean alpha channel number as the dial setting of a test
pulse that would give the same mean channel number.

For all the spectra recorded in a particular run (typically about 30 
spectra, measured during <8 hours), an absolute energy calibration was ob
tained in the following manner.

The stopping of the a-particles in the detector material is mainly due to 
inelastic collisions with silicon electrons, which result in the charge pulse 
collected at the detector surfaces. Lindiiard el al.22 calculated the energy 
loss due to nuclear collisions which can not be detected by this method. 
The theoretical values have been confirmed at lower energies23. In our energy 
range this “ionization defect’’ is 9-13 keV, increasing with energy. The in
cident energies of table I have to be reduced respectively, because we must 
tind the linear relationship between the a-pu Is eheights on the multichannel 
analyzer and the electronic energy loss in the detector.

The calibration energies were also corrected for the undetected energy 
losses in the gold surface layer and the adjoining deadlayer in the detector 
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material24. They were determined experimentally by observing the line shift 
of alphas incident at different angles. The total thickness corresponds to 
about 100 ygcnr2 gold, and gold stopping power25 was used to lind the 
energy loss for other alpha energies.

A linear least squares fit was calculated for the pulseheights (expressed 
in equivalent dial readings) versus the corrected calibration energies. An 
energy calibration factor /' is thus obtained. Zero energy was assigned to a 
testpulse dial setting of zero.

Occasionally, during a day’s observation, a drift of the energy calibra
tion factor amounting to a few kilovolts at 9 MeV could be seen. This was 
corrected for by interpolating the energy calibration with respect to the time 
of the day, so that every run effectively had its own calibration. If the drift 
amounted to more than 10 keV, the measurements would be rejected. The 
average standard deviation of the energy calibration runs is between 2 and 
5 keV. Second order fits did not improve the standard deviations.

On one occasion, calibrations with a commercial Th228 source were per
formed, using the a-lines at 5.338 MeV and 5.421 MeV (Ref. 20). Their 
pulseheights agreed with the usual calibration within 2 keV.

For the alpha particles travelling through the gas, the mean energy < Ti > 
is calculated from the equivalent dial reading of the mean alpha pulse
height, adding the calculated energy loss in the detector surface layer and 
deadlayer, and the ionization defect.

In addition to the uncertainty due to the energy calibration, a systematic 
error is introduced due to the choice of cutoffs of the distribution functions 
/'(7’i) of the reduced energies T\ at finite values T" and T". f(T') = f(T") 
are usually between 5°/0 and 10°/0 of the peak value of /'(Ti); thus < Ti > 
is determined by

J ftJWdT'l J /■(TI)d7’1. 
rpr rpf

Chetham-Strode et al.26 investigated low energy tails of various a-spectra 
from silicon detectors, and found, that the mean energy of a 6 MeV a-source 
decreased 0.07 °/0 relative to the mean energy derived from the symmetric 
part of the spectrum. If we assume the same relative decrease for all ener
gies, this correction is negligible, when we do not take the tails into account 
in the energy calibration.

The most probable energy 7’i,mOde for the energy spectra was determined 
by the limit of the mean energy, when the distance between the cut-off 
energies T' and T" was narrowed, so that the values of the distribution 
functions at these energies, f(T') = increased from 10°/0 to 100°/0 of 
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the peakvalues. We compared 1\, mOde - < I\ > with Tschalär’s27 calcula
tions, based on the classical collision spectrum with free absorber electrons. 
The deviations were less than 2 keV for higher < 7i >, increasing to 5 keV 
for the lowest < T\ >. They are probably caused by the neglect of the re
sonance contribution to the straggling in Tschalär’s theory.65

Uncertainties caused by the statistical nature of the number of counts in 
each channel are estimated to be less than 1 keV.

2B. Absorber Measurements

a) Apparatus.
A stainless steel vacuum chamber about 9 cm in diameter and 32 cm in 

lenght was used for the measurements. The silicon detector is mounted on 
one of the end plates. The source is installed in a holder attached to a lead 
screw with a pitch of approximately 1 mm. The lead screw was connected 
to a counter, indicating tenths of revolutions. The screw was calibrated 
every measuring day using a stainless steel lube as a gauge block between 
the scource holder and the detector mount. The length of the gauge tube was 
measured with a micrometer screw within 0.03 mm.

The distance from the detector mount to the gold layer of the detector 
surface was measured with a microscope, whose focus system was attached 
to a dial indicator. The distance was found, by focussing on the detector 
mount and on the gold layer, respectively, to be 1.54 ± .02 mm.

Distances d between 8 and 25 cm were used. No discrepancies connected 
with d were observed within the experimental accuracy. The over-all accu
racy is estimated to be 0.04 mm. Since the detector used had a diameter of 
about 5 mm, the distance from source to detector varies slightly over the 
detector surface. The maximum correction in d would amount to 0.05 °/0 for 
the edge of the detector surface. No correction for this effect has been made.

b) Gas Density.
Commercial compressed argon gas with a stated purity of 99.995 °/0 was 

used for the measurements. Impurities should falsify the data by less than 
0.01 °/0. The vacuum system was evacuated to better than 5 • 10-5 atm before 
filling with argon. Also, it was flushed three times before the final filling was 
introduced. Leakage of the system, including outgassing, amounted to less 
than 5-10~6atm per hour.

The argon gas pressure p was measured with a mercury manometer, 
which consisted of two vertical glass tubes (inside diameter about 1.87 ± 
0.02 cm) filled with doubly distilled mercury. The height of each mercury 
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column was measured by observing through a cathetometer telescope, simul
taneously, the top of the meniscus and a stainless steel meterstick mounted 
next to the glass tubes. The accuracy of the measurement is about ± 0.01 cm. 
Capillary corrections are estimated to be less than 0.003 cm, and the density 
of mercury was temperature corrected.

The temperature t of the gas was measured with a mercury-in-glass 
thermometer to within 0.1°C. Thermocouples were used to monitor the 
temperature at different places on the vacuum system. No gradients greater 
than 0.1 °C were observed. For the calculation of the gas density q, the Van 
der Waals equation is used in the following approximate form:

g = eo(l + po2 a/pA2) (1 - hpoM) (1)

where A = atomic weight of argon = 39.948 g/mole, @0 = Ap/RT, p = gas 
pressure in atm, R = 0.08206 1 atm/mole °K, T = gas temperature in abso
lute scale, a = first Van der Waals coelï. = 1.345 l2 atm/mole2, and b = 
second Van der Waals coelï. = 0.03219 1/mole. The difference between the 
liter 1 and the cubic decimeter dm3 has been neglected. Since at 1 atm, the 
Van der Waals correction amounts to only 0.123°/0, the first approximation 
to the density given by eq. (1) is sufficient.

The final absorber thickness s is derived by the product of the corrected 
distance d and the density q: s = d-Q.

The experimental errors of the measured energies and absorber thick
nesses are summarized in Table II.

Table II
Errors Associated with Energy Eoss Measurements.

Errors
Absolute Relative

Pressure Measurement
Height of Columns.................................... .......... ±0.1 mm 0.01 to 0.1%
Density of Mercury................................. . ............ ± 0.002 cm-3 0.01%
Temperature Measurement.................... ............. ±0.1°K 0.03%

Distance Measurement.................................. ............ ± 0.04 mm 0.02 to 0.04%

Energy Measurement
5 MeV < 7\< 9 MeV............................... ............. ±2 keV 0.04%
1 MeV < 7\< 5 MeV ............................. ............ ±5 keV 0.1 to 0.5%
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3. Corrections to the Experiment

Since the Bethe theory provides the integrated energy loss along the path 
of particles, corrections have to be estimated for the experimental data: 
for multiple scattering and for discrete energy loss (Lewis correction).

3 A. Multiple Scattering Correction

During their passage through the gas, the particles experience many 
small changes in the direction of their velocity, caused by Coulomb scat
tering by the nuclei. This results in pathlengths longer than the thickness of 
material traversed. The a-particles are not all emitted in the direction of 
the detector, and the multiple scattering distribution functions have to be 
integrated over the incident angles as well as the exit angles. This case has 
been treated by Øverås28, not taking energy loss into account. The method 
has been extended including the energy loss, as shown in the Appendix, 
fhe difference between mean pathlength and perpendicular absorberthick
ness s amounts to 8 //gern“2 for < T > = 8.78 MeV and < 7\ > = 1 MeV. 
The correction decreases rapidly for increasing < 7’i > and is negligible for
< 7’i > > 3 MeV.

3B. Lewis Correction

The Bethe theory provides the mean energy loss of particles in a thin 
absorber; for thick absorbers we have to integrate the inverse stopping power 
function, as if there was a continuous slowing down of the particles (‘‘esda 
approximation”). The increasing energy spread of the initially monoener- 
getic particles will in a finite absorber cause a difference between the mean 
esda energy loss and the actual energy loss. Lewis29 has given a derivation 
of this ell'ect, using the classical single collision law :

7X(),7’) = Â/(2 7’-Q2)

w here Q is the energy transferred to an electron and k = 2tiNZ z2e4Mlm [see 
eq. (3)]. For small energy losses (less than 800 keV for our problem), 7’ is 
approximately constant, and 7>(Q,7’) will be constant. Then the experimental 
spectrum (p((J,T) will give the same average energy loss as the esda calcu
lation.

For larger energy losses the 7’-dependence of 1\Q,T) makes the distribu
tion broader, and a tail appears at the low energy end of the spectrum.
< 7’i > thus becomes lower than the theoretical esda energy, which is used 
for the further evaluation of the experimental data.
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Table III
Corrected energy loss data for a-particles in Argon. < T > is the incident 
a-energy corrected for selfabsorbtion and < 7\ > is the average energy al 
the detector surface after passing through the gas. Corrections for the detector 
surface layer and the ionization defect are included in < 1\ >. s is the gas 
thickness corrected for multiple scattering to give the mean pathlength. Two 
sets of measurements are presented.

< T> = 6.058 MeV < T> = 8.782 MeV

s < T\> s < ?’i>
mgem- 2 MeV in gem-2 MeV

7.617 1.044 13.948 1.358
7.576 1.095 13.748 1.589
7.192 1.526 13.202 2.074
6.608 2.071 12.718 2.465
6.559 2.104 11.976 3.040
5.995 2.573 11.168 3.588
5.297 3.089 10.446 4.038
4.625 3.545 9.590 4.533
3.810 4.054 8.733 4.997
3.016 4.515 7.779 5.490
1.995 5.072 6.660 6.029
1.070 5.542 5.661 6.490

4.442 7.028
3.207 7.539
1.973 8.041
0.659 8.539

7.768 0.864 14.014 1.310
7.254 1.477 13.167 2.124
6.698 2.006 10.630 3.936
6.144 2.468 10.470 4.022
5.513 2.943 9.942 4.341
4.808 3.422 8.969 4.879
4.006 3.935 7.887 5.445
3.140 4.450 6.871 5.938
2.217 4.960 6.797 5.972
1.258 5.448 5.784 6.440

4.696 6.920
3.698 7.339
2.348 7.888
1.014 8.401
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'Ehe positive correction to < 7\ > gives a negative correction to the 
energy loss and to the stopping power used for computation of the theoretical 
mean range

< T>
R - J [i/s(r»<ir. (2)

0

Therefore the integrand in (2) will increase due to the correction, and B 
will be slightly larger. 'Phis effect was discussed by Lewis29 for the total 
range of a charged particle. Tsciialär27 calculated the correction to < 7\ > 
by a similar method. According to his results, the increase of < 7i > is less 
than 0.5 keV for < 7i > ~ 1 MeV, and smaller at higher values. No cor
rection therefore is applied for this effect.

3C. Corrected Experimental Results

An experimental data point consists of three numbers: a) initial alpha 
particle energy <T>, b) corrected mean energy < 7\ > of alpha particles 
after the absorber, c) corrected mean pathlength s. A list of the data points 
is given in Table III. No empirical range energy relation is presented; in
stead a comparison with Bethe’s theory will be presented in Section 5. No 
independent data are available for a direct comparison. A comparison with 
other data, using the theory, will be given in Section 6. The results deviate 
slightly from those reported in ref. 30 due to previous errors in the data 
treatment.

4. Theoretical Interpretation
4A. Bethe Stopping Power Theory

Bethe’s theory is used for the interpretation of the data. The basic for
mulation for the stopping power S = -dT/ds follows from the Born approx
imation :

5 = 4zte4(z2/mu2) • N • B (2)

where e and m are electron charge and mass, z and v charge number and 
velocity of the particle, N the number of stopping atoms per cm3 and B 
the stopping number. In the quantum mechanical theory (see e.g. ref. 2) B is 
defined as31

B = Z ln(2nw2ll') — ^Ct
i

(3)
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where Z is the atomic number of the absorber, I the average ionization 
potential, and Ci the so-called shell corrections, one term for each electronic 
shell of the absorber atom. For argon, the following expression is obtained:

S = (0.30706 z2/A02)-{Zrø  in 1] - CK - CL - CM} (4) 

where A is the atomic mass of argon, ß is f relative to the velocity of light in 
vacuum, and /(/?) = In 2mc2ß2/(l - /?2) — ß2.

For Ck and Cl, Walske’s values 32>33 can be used approximately. No 
reliable theoretical determination of I and Cm are available. Since Kiiandel- 
wai.’s calculation34 of C’m is based on hydrogenic wave functions, it cannot 
be considered to be applicable to argon. Even the L-shell correction is not 
strictly applicable, but it will be practical as a first approximation.

4 B. Particle Charge Dependence

According to the Bethe formula (2) the stopping power is proportional 
to the square of the particle charge z, since 13 as defined in (3) only depends 
on the particle velocity. Recently Heckman and Lindstrom15 discovered dif
ferences in the stopping powers of positive and negative pions at the same 
velocity, and Andersen et al.16 also detected deviations from the theoretical 
charge dependence for hydrogen and helium ions. The latter authors indi
cate, that the discrepancy is present in previous data, although the errors 
are of the same order of magnitude as the deviations.

This effect is not taken into account in the present data treatment, since 
no satisfactory theoretical approach is available. The following presentation 
of stopping powers and ranges is thus strictly confined to a-particles. In 
section 6 a comparison with available hydrogen ion data will be presented.

4C. Charge Exchange Correction

When the a-particles slow down below 2 MeV, they begin to capture 
electrons from the gas atoms, and subsequently lose electrons also. By this 
process the a-particles suffer energy losses in addition to the normal electronic 
stopping, and Bethe’s formula cannot be used, even if the average charge of 
the He-ions is known. However, it is practical to apply the total correction 
to z2 in eq. (2), and Whaling’s table35 for determination of 5 for a-particles 
from proton stopping powers is used. Wiialing’s table is an average over a 
collection of experimental data, and the charge corrections are estimated to 
be within 2O°/o of the tabulated values. Intermediate values were determined 
from the table by linear interpolation.
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41).  Fitting Procedure

For the comparison with the experimental data, two methods of approx
imation for shell corrections will he used. In both cases, / is a parameter to 
be determined from experiment, and Walske’s Ck is assumed to be correct.

Method 1 It will be assumed that the shell corrections for the L and M- 
electrons can be combined into one function:

CL + M = VL'Cl(HL' ß2} (5)

where Cl is Walske’s L-shell function and Vl and Hl are para
meters determined from experiment.

Method 2 Walske’s Cl is assumed to be correct and an Af-shell correction 
is determined with two parameters Vm and Hm’

Cm = Vm~ Cl(Hm ‘ ß2) (6)

where again Hm and Vm are determined from the experiment.

A Fortran program similar to the one described in ref. 36 was used for 
the evaluation of the experimental data and the comparison with theory. 
The theoretical range difference r, obtained by integrating over the stopping 
power S (eq. (2)), using the experimental energies < T > and < 7\ > :

< T>
r - J S-^IT (7)

< T, >

was compared with s, the experimental pathlength.
A least squares lit was obtained for the three parameters I, and Hl, Vl of 

eq. (5), or Hm, Vm of eq. (6), using /2 = 2 (r-*) 2 to find the minimum. 
The weighting factor is approximately constant, and assumed to be 1. 
Furthermore the program computed the sum of the estimated shell-correc
tions, divided by Z, plotted in Fig. 6. Due to the large errors in the charge 
exchange corrections, the experimental measurements for < 7\ > ~ 2 MeV 
should have a weighting factor less than 1, but this was omitted.
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<r,> / MeV
Fig. 2. Least squares fit of range difference measurements in argon, r is the calculated range 
difference [from eq. (7)]. The horizontal line at 0.00 mgcnr2 represents the fit, where the L and 
M-shell corrections are combined into one function, Cl+m (method 1). The other curve appears, 
when Walske’s Cl is assumed to be correct, and the Af-shell correction is fitted seperately 
(method 2). Method 1 and method 2 have rms errors 8.7 and 9.1 /zgcm-2, respectively. A ( < 2’i >) 
indicates the estimated error in (r-s) due to the total error in the energy measurements. The 
slope zero of the horizontal line represents the inverse of the stopping power S in Table IV, and 
the tangent of the angle y indicates an 0.3 °/0 change of S at the energies 1 and 9 MeV, respec
tively. • : incident a-energy <T> = 6.058 MeV ; Q: <T> = 8.782 MeV.

5. Results

The evaluation of the experimental data according to Method 1, using 
Walske’s Ck and scaling Cl with two parameters to obtain a best fit, yields 
I = 182 eV, Hl = 1.6, Vl = 1-2. The rms deviation is £ = ± 8.7 /fgcni 2. 
Values of q = r — s are plotted versus residual mean energy < 7\ > in Fig. 2. 
r is computed according to eq. (7). Total ranges

T
rt = f S-hlT + R(1 MeV) (8)

i

with R (1 MeV) = 0.85 mgcm-2 and the stopping power S obtained in the 
course of the calculation are given in fable IV.

It can be shown mathematically37, that experimental rms deviations dS 
of S are those in Table IV, and they agree with the estimated errors obtained 
empirically by drawing curves of different shapes through lhe experimental 
points of Fig. 2.

It is quite obvious from eq. (4), that small changes in I can be compen
sated for by corresponding changes in the shell corrections over a limited
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Table IV
Stopping power and range as a function of energy for a-particles in argon. 
S are the theoretical values using ecp (11) (Method 1), and /I .S' are the estimated 
rms deviations of S. Idle range is defined by eq. (8). The value 0.846 mgcm-2 
for 1 MeV is adopted from a comparison with total mean ranges from ref. 38 
(see section 6)

a-energy
MeV

s
keV/mgcm-2

AS
o / /o

Range 
mgcm-2

1.0 1169 0.846
1.25 1103 1.5 1.067
1.5 1039 0.8 1.299
2.0 901 0.3 1.820
2.5 793 2.413
3.0 715 3.078
3.5 654 3.810
4.0 605 4.606
4.5 564 5.462
5.0 529 6.379
5.5 498.7 7.353
6.0 472.2 8.384
6.5 448.9 9.470
7.0 428.0 ,, 10.62
7.5 409.3 11.81
7.75 402.6 12.47
8.0 392.3 0.8 13.06
8.5 369.7 15.03
8.75 376.9 1.5 14.36

energy range. Thus, e.g., for this method, a local minimum is also found at
I = 179 eV, Hl = 1.6, and Vl = 1.3 with £ = ± 8.8 /zgcm-2. Therefore it is 
not possible to assign unambiguous errors to the experimentally determined 
parameters.

Idle second method (using Walske’s Ck and Cl, and Cm scaled from Cl) 
yields an /-value of 167 eV with Hm = 3.6 and Vm = 1.1. The rms deviation 
£ is ± 9.1 /zgcm-2.

The analysis of Martin and Northcliffe’s a-particle data39 using 
Walske’s unmodified Ck and Cl gave an /-value of 184 eV40, This indicates 
that Method 2 overestimates the shell corrections, and the not unex
pected conclusion is that Cl cannot be used for Z = 18 without modifi
cation.
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Table V
Stopping powerS in keV/mgcm-2 and ranges in mgcm-2 for a-particles in ar
gon computed using the program of ref. 36 with 1 = 182 eV, Walske’s K-shell 
correction and the L-shell correction fitted to the present experimental data.

Mat. Fys. Medd. Dan.Vid. Selsk. 38, no. 3.

Energy
MeV

S Range Energy
MeV

S Range Energy
MeV

s Range

1.0 1169 0.85 10 337.8 18.57 100 60.3 937.6

1.1 1137 0.93 11 316.4 21.63 no 60.0 1110
1.2 1111 1.02 12 297.9 24.89 120 52.3 1295
1.3 1092 1.11 13 281.7 28.34 130 49.11 1492
1.4 1074 1.21 14 267.3 31.99 140 46.35 1702
1.5 1039 1.30 15 254.5 35.82 150 43.92 1924
1.6 1005 1.40 16 243.0 39.84 160 41.77 2157
1.7 974 1.50 17 232.6 44.05 170 39.84 2403
1.8 944 1.60 18 223.1 48.44 180 38.11 2659
1.9 922 1.71 19 214.5 53.01 190 36.55 2927

2.0 901 1.82 20 206.6 57.77 200 35.13 3206

2.2 854 2.05 22 192.6 67.80
2.4 811 2.29 24 180.6 78.53
2.6 776 2.54 26 170.1 89.95
2.8 744 2.80 28 160.9 102.0
3.0 715 3.08 30 152.8 114.8
3.2 689 3.36 32 145.5 128.2
3.4 665 3.66 34 139.0 142.3
3.6 643 3.96 36 133.1 157.0
3.8 623 4.28 38 127.7 172.3
4.0 605 4.61 40 122.8 188.3
4.2 588 4.94 42 118.3 204.9
4.4 571 5.29 44 114.1 222.1
4.6 556 5.64 46 110.3 240.0
4.8 542 6.01 48 106.8 258.4

5.0 529 6.38 50 103.4 277.4

5.5 498.7 7.35 55 96.1 327.6
6.0 472.2 8.38 60 89.8 381.5
6.5 448.8 9.47 65 84.4 438.9
7.0 428.0 10.61 70 79.7 499.9
7.5 409.3 11.81 75 75.5 564.4
8.0 392.3 13.06 80 71.8 632.3
8.5 376.9 14.36 85 68.5 703.7
9.0 362.7 15.71 90 65.5 778.3
9.5 349.8 17.11 95 62.8 856.3

2
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Thus for argon, the three parameters to be used for a calculation of 
stopping power for a-particles are

I = 182 eV
Hl = 1.6
Vl = 1.2

Table V gives the stopping powers and ranges for 0.5-200 MeV a-par
ticles computed with the above values for the parameters according to 
Method 1. In ref. 30 tables for hydrogen ions are calculated with the same 
parameters, not taking into account the charge dependence of the particles.

6. Discussion
6 A. Range Measurements

Experimental measurements of extrapolated ranges by Harper and 
Salaman4 for Po210, Bi212 and Po212 alphas in argon were modified to yield 
mean ranges by Bogaardt and Koudijs38. Since the present data are range 
difference measurements, the range for 1 MeV alphas was estimated by 
adjusting Bogaardt’s values to our data. This value is 0.846 mgcm-2, and 
the resulting range energy curve agrees within 0.03 mgcm-2 with Bogaardt’s 
ranges. The error estimated by Bogaardt is 0.07 mgcm-2. An earlier evalua
tion of Bogaardt’s data using Walske’s Ck and Cl gave a value I = 183 eV40. 
Fig. 3 presents a comparison with other range data R on this basis. Our 
results rt correspond to the horizontal line at 0.00 mgcm-2 framed by dotted 
lines at a distance of Fins = 0.009 mgcm-2.

Mano41 measured range differences for several a-sources, and Bogaardt38 
lilted the results to Harper and Salaman’s mean ranges. The good agree
ment with our range-energy relation at 10.538 MeV indicates, that the errors 
of the stopping powers at the upper limit of our energy range is considerably 
lower than estimated in table IV.

Several extrapolated range measurements for Po210 42,43,44,45 reduced 
to mean ranges fluctuate with errors around 0.05-0.10 mgcm”2, giving an 
error of the same order of magnitude to the above determined, initial 
1 MeV-range. The a-energy value was taken from Rytz19 and corrected for 
selfabsorption as described in section 2 A. a).

Bertolini and Bettoni46 measured ranges up to 3.5 MeV within 3°/0, 
in reasonable agreement with our results.
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Fig. 3. Range measurements for a-particles in argon. Other data R are compared with present 
results ri from Table V. R-rf is plotted versus the a-energy E. The dotted lines indicate the 
rms = 0.009 mgcm-2 of the present results. +: Harper and Salaman4; a: Mano41; 
O: Naidu42; □: Colby and Hatfield43; ®: Schmieder44; A: Eichholz and Harrick45; 
■ : Chang14. The fully drawn curve below 3.5 MeV represent the ranges measured by Ber- 
tolini and Bettoni46.

Chang14 measured range differences sch with the same a-source energies 
and the results can be plotted in Fig. 3 directly, without introducing any 
initial alpha range. The deviations are so large, that some of the points could 
not be plotted on the scale. The fractional difference (r - sch)/r (eq.(7)) is 
approximately constant (1 — 2°/0), indicating a systematic error due to the 
measurements of R.

6B. Stopping Power Measurements

Figure 4 shows available stopping power data in our energy range. Curve 
1 are the results of Bertolini and Bettoni46; from the error of their range 
measurements an overall error of about 5 °/0 can be estimated37 for the 
stopping powers. They are in reasonable agreement with curve 2, a plot of 
table V, where the dotted curves indicate the estimated standard deviations. 
Curve 3 are values from Ramirez et al.'17; no errors are reported.

2*
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Fig. 4. Experimental stopping powers S of a-particles in argon versus a-energy. Curve 1 : 
Bertolini and Bettoni46, curve 2: present results (errors indicated with dotted curves), and 
3 : Bamirez et al.*7.

6C. Hydrogen Ion Stopping Powers

Recently15’16 it has been confirmed, that stopping powers of ions with 
different charges but the same velocity do not exactly follow the simple 
charge dependence of the Bethe formula (2). For a comparison we make 
use of the following procedure adopted from ref. 16.

We define the quantity L as

L = B/Z = f(ß) - In / - C/Z

where B is the stopping number in eq. (3), and C = 2 G-, the sum of the 
i

shell-corrections. L can be determined from eq. (2), when the experimental 
stopping power S is known. Andersen et al.16 have shown, that the dif
ference between /. for helium ions I.ne and L for hydrogen ions Lh at the 
same particle velocity is almost independent of the absorber material. A plot 
of /.-differences is shown in Fig. 5. Curve 1 is an average over Andersen’s 
aluminium and tantalum measurements, and the open circles indicate the 
data of ref. 15 giving the L-difference for negative and positive pions, 
Ln_— Ln+, in nuclear emulsion. If we assume, that the particle charge cor
rection is a linear function of z, we can from Andersen’s and Heckman’s 
measurements estimate Lo~ Lh, the correction of L for some artificial par
ticles with zero charge.

Several hydrogen ion stopping power data for argon were compared with 
the present results by derivation ol'Lj/e — Lh. Wolke et u/.48 measured triton
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Fig. 5. Comparison of stopping powers in various materials for particles with different charges 
and identical velocities. The difference Lffe—Ljj an<1 Ln~— Ln + as defined in section 6 is plotted 
versus equivalent proton energy Ep = (Mp/M)-E (M and E mass and charge of appropriate ion). 
Curve 1: Andersen et al.16; curve 2: Wolke et aZ.“/present ; curve 3: jANNi53/present;--------
1/Z - C<B)) as defined in section 6D; O: Heckman and Lindstrom15; + : Cu and •: Au
from Ehrhardt et aZ. 25/Green et al.52; x : Reynolds et aZ.“/present;  : Chilton et al.50/present: 
▲ : Brolley and RiBE51/present. The errorbar indicates the effect of a 1 °/0 change in the 
stopping power of one particle.

ranges*  and evaluated the stopping powers in the range 0.5-0.8 MeV equi
valent proton energies. Stopping powers of protons are reported by Reynolds 
et al.49 at 0.5-0.6 MeV, by Chilton et al.50 at 0.5-1 MeV, and by Brolley 
and Ribe51 at 4.43 MeV. Brolley and Ribe’s data have to be compared with 
the a-stopping power value of table V at 17.7 MeV, i.e. outside our experi
mental energy range.

For all argon data the errors of the proton measurements are of the 
same order of magnitude as the difference Ehé - Lh, but from figure 5 is 
seen, that the effect is systematic and significant. At Ep = 0.5 MeV we have 
included the differences for some a-particle and proton measurements in 
Cu and Au52»25, indicating the week dependence of the stopping material.

Janni’s table of proton stopping powers in argon53 is also compared with 
the present measurements (curve 3 of fig. 5). They are semiempirical results 
from scaling and interpolating the shell-corrections for Ep ~ 1 MeV. At Ep =

Tabulated data received by private communication.
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Fig. 6. Sum of shell-corrections C to the stopping power formula (5), divided by Z, versus 
reduced energy Ep = (Mp/M)E, as defined in figure 5. Curve 1: Bonderup8’; curve 2: present, 
derived from the filting procedure described in section 4D.

1 MeV a discontinuity appears, because the scaling method could not be 
applied in this region.

Recently Swint et. al.66 measured proton stopping powers for argon in 
the energy range 0.6-3.4 MeV. Their data are several percent higher than 
the measurements by other authors, and this wotdd give L-dilTerences far 
below zero on tig. 5.

6D. Theory

Although no theoretical treatment of the particle charge dependence is 
available, a selection of theoretical computations of /-values and shell
corrections is presented.

Dal ton and Turner54 reanalyzed a series of high and medium-energy 
proton data for argon, and made use of Fano’s3 asymptotic shell corrections 
for the entire atom. Their /-value for argon is 189 eV, but no measurements 
were used for the computation, where the protons were in the same velocity 
range as our a-particles.

A theoretical calculation of / has been done by Bell55, using a procedure 
suggested by Dalgarno56 for interpolation of / from known oscillator 
strength sums in Bethe’s theory. Bell reports / = 196 ± 23 eV.

Bonderup57 performed calculations of electronic stopping powers for 
heavy charged particles to quite low energies, by relining the procedure 
suggested by Lindhard and Scharff58, which makes extensive use of statis- 
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tical models of the atom. He presented his results as the shell corrections C<ß) 
to the original Bethe formula, and used the /-value as a parameter*.  They 
are plotted in Figure 6 versus equivalent proton energy Ep together with the 
present shell corrections from the fitting procedure described in section 41), 
divided by Z. Since Bonderup’s shell corrections are the same for different 
charged particles at the same velocity, it might be valuable to assign the 
calculations to particles with zero charge correction.

Andersen et al.16 indicated, that stopping powers for low charged par
ticles were identical at the same velocities for Ep Z 50 MeV, and we con
clude, that the L-differences in Figure 5 are negligible for high energies. Also 
the shell-corrections are smaller than the experimental errors for high Ep 
(ref. 3), and according to the definition of L-differences it is then reasonable 
to assign identical /-values for different charged particles. The L-differences, 
e.g. LHe - Eh, are thus actually the differences in the shell-corrections (C(//) 
- C(7/e)), divided by Z. By this interpretation we have in Figure 5 plotted 
the difference (1 /Z) • (C(He> - C^B)) (dotted) with curve 1 as zero line; it is seen, 
that the resulting curve coincides with that zero charge correction, one could 
obtain from interpolation of Andersen’s and Heckman’s L-differences — in 
agreement with the assignment of Bonderup’s shell corrections C(B) to zero 
charged particles.

7. Conclusion

Energy losses up to 7.5 MeV of 6.058 MeV and 8.782 MeV a-particles in 
argon have been measured within 2-5 keV. After correction of the data for 
multiple scattering, a fitting procedure using the Bethe theory for stopping 
powers gave the mean excitation potential I = 182 eV, and the shell-correc
tions. The derived stopping powers are within 0.3 °/0 for 2-8 MeV a-partic- 
les. The comparison with other proton stopping power data is in agreement 
with the newly confirmed differences in stopping powers of different charged 
particles with identical velocities.
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APPENDIX

Correction to the Pathlength due to Multiple Scattering

Several authors have treated multiple scattering corrections to the path- 
length of a beam of charged particles incident at right angles to a plane- 
parallel slab of material59’60’61’62. In our case, however, it is a reasonable 
approximation, that the a-particle source is isotropic over the plane facing 
the detector, and we cannot directly use the calculated corrections for a 
monodirectional beam.

Øveras28 has treated multiple scattering also for an “isotropic” beam, 
corresponding to the integration over all incident angles. Example 1) p. 64

Fig. 7. Exaggerated view of charged particle track suffering multiple scattering in plane layer 
of material. Symbols are defined in the text.

of ref. 28 fits to our geometry, except that the energy loss of the particles 
during their passage is neglected. Øveras included the energy loss in several 
other cases, and il is the aim to present the derivation of the correction for 
example 1) with energy loss.

The definition of a series of formulas used in Øveras’s treatment will be 
necessary. For further details it is suggested to consult his report.

Formulation of problem: Consider a plane parallel layer of the material 
with a particle at angular incidence 00 = {<Z>q2), as shown in Figure 7. 
The particle undergoes AT small angle scatterings Oj and emerges at the co
ordinate r = {y(2), y(3)} relative to the line A. Ô = {ø(2), ø(3)} is the angle of 
emergence.

The pathlength s is then
V-l J N

s = x + e = Zl 2 (1 + öj)1/2 « AM -I— 2 »
j = 0 2 ; = o

where x is the thickness of the layer, e the correction, and d = x/N. The 
problem is to find e averaged over all possible paths s.
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Probability Distribution: The probability for a single scattering event is 
approximated by the Gaussian

(9)

where a; is the mean square space angle per unit length, which gives the 
best Gaussian fit to Moliére’s theory63’64.

Distribution of Projected Angle: It is more convenient to express e in the 
projected angle = {£)2), £]3)}, where = 0; - 0;_i for j > 1, and /0 = 
0O. Then the mean value e of e for all incident angles 0O can be written

i /MiFIF + fFTFi -h + h- (io) 

k, I = 0

where = (N - À) for k > l,(N - 1) for I > k, and

— co

is the distribution function of the projected angle, in close relation 
to the probability distribution in eq. (9). p also depends on the experimental 
geometry - some specific conditions vv, usually standing for 00. 0 and y. 
Average values of quantities projected in the directions (2) and (3) will be 
the same, because our geometry is symmetric along line A in figure 7.

Energy Loss: <Xj in eq. (9) is not constant, but depends on the energy of 
the decelerated particle. Øveras used the approximate range-energy relation 
R = C-E1-8 to lind a; from ao, the mean square spaceangle at the particles 
entrance into the material.

Fourier Representation: In Øveras’s treatment the distribution function 
p(^7|pr) is transformed to the Fourier representation, and the geometrical 
conditions take form as Dirac ^-functions

\/ = 0

where Uvj is defined in table VI.
The distribution function p(£j/vvj has to be normalized by integration 

over all The resultant constant ivfvy) takes the form

/1 \"I2P\112 1,p(^ = y y ÎK^pexp(è,2/4a’c) (11)
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Tabel VI

where

(12)

w' = i vv' = 1

give an operative expression for thethis formalism it is possible to

n is

1 Zl2
ôki + ;------ bkbi -+

-iat a;

In
mean value £k%i"

11
id |‘2afc

and

i vj

(b‘o
0 1
y Z1(1V-J)

the number of conditions uv defined by the geometry

N n
°W = (J/4) 2 UvJU^I<X} a = 1/4 2 b (Jvv-

1 = 1 vv' = 1
n n

b = 1/2 2 c = 1/4 2 l>vl,v’law' •

bk, bi, and £o are operators depending on the geometrical conditions:

(14)

where x,Â,a> are arbitrary positive integers.
When inserting (13) into (10), e can be determined.

0o and integrated, y specified’. This situation corresponds to our special 
geometry, which is treated in expl 1) of Øveras’s report28 p. 64 without 
energy loss. Since only one geometrical condition is present, n = 1, and 
i>i = y. From table VI we get Lhk = z1(Ar - k), and we obtain from (11) 
and (12)

zl3 N
aVV' = <?n = ~~ ' 2 (N - k)2/ock, (i = (Ar2/Zl)/(7ii,

4 k = 1

b = (dNy/2)crii,c = (y2/4)/an, and w = l/(A'Zl).

For the operators defined in eq. (14) we get

bk = - zl(A’ - k)d/dy, and bj = -/i(N - j)d/dy.

The operations on w, defined in eq. (11) reduce to 
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div/dy = O, and div/db = (iv-b^/Za.

Wc are now able to derive £k£i in eq. (13) and insert the result in (10) to 
find Ë :

ë(y) = (Zl2/2) 2 (N - À)/at - (J2/2N) 2 (^ ~ O2/«*  + (15)
k = 0 fc = 0

Energy Loss: The summations in eq. (15) can be expressed as integrals 
defined by Øveras:

A(m) = (6a0/a:3).f (x - £)2/a(£)o?£
ô

B(m) = (2ao/x2)f(æ - £)/a(£)d£
o

where in = Qx/Ry, Q = density of absorber, and Ry = total range ol in
cident particle. The final result for y = 0 is

ë = (æ2/12ao)(3B(m) - A(m)),

and table VII shows £ in /zgem-2 for some typical energy losses.

Table VII
Average increase £ in pathlength of a-particles due to multiple scattering. 
< T > = incident energy, < Ti > = mean exit energy.

< T > = 6.06 MeV < T > = 8.78 MeV
< > / MeV ë///gcm-2 < > / MeV ë/jUgcm-2

1 4.0 1 8.0
2 2.4 2 5.8
3 1.3 3 4.0
4 0.5 4 2.4
5 0.1 5 1.6

6 0.8
7 0.3
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